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The energies and wave functions of several lowest-lying vibrational states of FHF-, ClHCl-, and BrHBr-

have been computed by a finite-difference method with and without the Born-Oppenheimer (BO) separation
between the heavy (halogen) and light (hydrogen) particle motion. The so-called diagonal BO correction
(DBOC), which includes the effect of the heavy particles’ kinetic energy operator acting on the light particles’
wave functions, has also been made to the energies. The errors caused by the BO approximation are found
to be remarkably small (ca. 10-5 au) and can be systematically and effectively reduced by the DBOC except
for states excited in the heavy particle motion. When the bare mass of the light particle is used instead of the
reduced mass in the BO approximation and, therefore, the translational degrees of freedom are not correctly
decoupled, the errors in the BO treatment become greater by a factor of 2-7. However, these additional
errors are almost completely erased by the DBOC. Analytical and numerical results suggest that the remaining
errors in the BO and DBOC treatments be proportional to ε1 and ε2, where ε is the mass ratio of the light to
heavy particles, when the corrections are made to the potential energy surfaces and the wave functions for
these surfaces are determined variationally. When the DBOC is applied in the first-order perturbation
approximation, the remaining errors scale as ε3/2.

I. Introduction

Accurate solutions of the Schrödinger equations of poly-
atomic molecules are hard to obtain because of their high
dimensionality. A general and effective technique of tackling
high-dimensional partial differential equations exists, how-
ever, and it is the approximate separation of variables. In
computational quantum mechanics, this is invoked every-
where, but unquestionably the most important example is the
Born-Oppenheimer (BO) separation1 between the nuclear
(vibrational, rotational, and translational) and electronic
motion. A vast array of chemical properties (energies, spectra,
reactions, etc.) of molecules containing even the lightest
nuclei (protons) can be reproduced or predicted highly
accurately within the BO approximation. Equally importantly,
useful quantitative concepts of chemistry such as equilibrium
molecular structures, potential energy hypersurfaces, Franck-
Condon principles, and so forth are derived from this
approximation.

Recently, considerable efforts have been devoted to lifting the
BO separation between electrons and nuclei.2-7 Given the success
of the BO approximation, however, we find it equally or even more
profitable to consider introducing an additional BO-like separation

between dynamical degrees of freedom with disparate mass or
energy scales and study its validity. An ideal system for this study
is a linear heavy-light-heavy molecule such as FHF-, ClHCl-,
or BrHBr-, which has vibrations primarily involving hydrogen
motion and a halogen-halogen stretching vibration that can be
subject to a BO-like separation.8 In this “second” BO approximation
(as the usual BO separation between electrons and nuclei are also
in operation), the two halogen atoms are held fixed in space and
the hydrogen atom’s three-dimensional equation of motion is solved
initially. This is followed by the description of the halogen-halogen
stretching motion in effective one-dimensional potentials defined
by the hydrogen atom’s vibrational energies. The heavy-light-heavy
configuration of these molecules allows the three translational and
two rotational degrees of freedom to be conveniently decoupled.
Furthermore, the mass ratio (ε) of light to heavy particles in our
vibrational problems is on the order of 0.1 as opposed to 0.0001
of electrons to nuclei, and therefore, the errors caused by the second
BO separation should be quantified and analyzed relatively easily.

In this article, we shall show that, despite the very large
mass ratio (ε ≈ 0.1), the anharmonic vibrations involving
primarily the halogen atoms and those involving the hydrogen
atom can be treated separately, causing only small errors in
FHF- and even smaller, negligible errors in ClHCl- and
BrHBr-. The errors caused by the BO approximation in the
zero-point energies are shown both analytically and numeri-
cally to be asymptotically linear in ε, contrary to the previous
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conclusions of Born and Oppenheimer1 (ε5/4) or that of Takahashi
and Takatsuka9 (ε3/2). They are, however, consistent with the
findings of Pino and Mujica10 and Garashchuk et al.11 in analytically
solvable model problems. Furthermore, the BO errors can be
reduced systematically and effectively by the diagonal BO cor-
rections (DBOC)12 except for states that are excited in the hal-
ogen-halogen stretching vibrations. The asymptote of the remain-
ing errors is expected, mathematically, to be ε2, when the
corrections are made to the potential energy surfaces and the wave
functions for these surfaces are determined variationally. The
numerical results are consistent with this analytical conclusion.
When the DBOC is applied in the first-order perturbation ap-
proximation, the errors scale as ε3/2. Two ways of the BO
separations (one using the bare hydrogen mass and the other the
reduced hydrogen mass) and the corresponding DBOC have been
examined, and the above conclusions are unaltered. This study
strongly suggests that the BO separation has a broad range of
applicability and should be applied to the dimensions that have
been less explored by this general technique.

II. Theory

This section and the next outline the definitions and algo-
rithms of the BO and DBOC treatments using either reduced
or bare mass of hydrogen, adopting FHF- as a representative
case. ClHCl- and BrHBr- can be treated in the same manner
by making appropriate substitutions for the potential energy
surface and the halogen masses.

FHF- is a linear equidistant molecule with four vibrational
degrees of freedom: symmetric stretch, antisymmetric stretch,
and doubly degenerate bend. Neglecting rovibration coupling
(e.g., centrifugal distortion and Coriolis coupling), we can obtain
their anharmonic frequencies and wave functions by solving
the following vibrational Schrödinger equation (in atomic units)
for a given potential energy surface, Ee(rH,zH,rFF):

where E is the energy of a vibrational state, Ψ is the
corresponding wave function, and mF′ and mH′ are reduced
masses: mF′ ) mF/2 and mH′ ) 2mFmH/(2mF + mH), where mF

and mH are the atomic masses of fluorine and hydrogen,
respectively. The wave function is expressed in terms of the
F-F distance rFF and the hydrogen position (rH,�H,zH) in the
cylindrical coordinates anchored at the midpoint of the two
fluorine atoms (Figure 1). Ee does not depend on the angle �H.
In eq 1 and thereafter, the subscripts e, H, and F (or FF) refer
to energies and wave functions of electrons, the hydrogen atom,
and the fluorine atoms, respectively. The translational and
rotational degrees of freedom have been removed from eq 1
except that, when rH > 0, the molecule is bent and the four
dynamical degrees of freedom under consideration consist of
three vibrational and one rotational degree of freedom.

The question we ask in this study is how accurate the BO-
like separation is between the hydrogen coordinates (rH,�H,zH)
and the fluorine coordinate (rFF) in solving eq 1. Unlike the
usual BO separation between electrons and nuclei where the
mass ratio is on the order of 0.0001, the mass ratio (ε ) mH/mF′
≈ mH′ /mF′ ) in this purely vibrational problem is about 0.1. A
difference between the solutions of eq 1 with and without the
BO separation should, therefore, be greater and more precisely
estimated. The comparison should give us a quantitative insight
into the accuracy of the BO approximation in vibrations and,
by extension, that of the BO approximation between electrons
and nuclei, which is much harder to quantify.

The BO approximation consists in the forced factorization
of the total wave function as follows:

where �(rH,zH,�H;rFF) is the vibrational wave function of the
hydrogen atom’s motion and �(rFF) is that of the fluorine atoms’
motion. The hydrogen vibrational wave function � is a function
of rH, zH, and �H and depends parametrically on rFF (the
dynamical variables and parameters are separated by a semi-
colon). It is the solution of the three-dimensional partial
differential equation

Note that the reduced hydrogen mass mH′ is used in light of the
original Hamiltonian in eq 1. The only approximation is,
therefore, the factorization in eq 2. However, the BO ap-
proximation in electronic structure theory involves another
assumption in addition to eq 2, which is the use of mH in the
place of mH′ . We shall examine both equations: eq 3 and that in
which mH′ is replaced by mH (see below).

In the cylindrical coordinates, the Laplacian is expressed as

Since the potential Ee(rH,zH,rFF) is axially symmetric, � can be
written exactly in the factored form:

where k is a quantum number that can take any integer value.
The angular momentum of the hydrogen atom’s rotational
motion around the molecular axis is k au. The function � satisfies
the two-dimensional partial differential equation

Figure 1. Cylindrical coordinates for FHF-.
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where the coupling between rH and zH is strong and no further
approximate separation of variables should be introduced. This
equation was also considered by Lohr and Sloboda8 previously.
The singularities in the Laplacian (1/rH and 1/rH

2) require that

for k ) 0 and

for k ) 1, where a is a nonzero constant. The function � can be
assumed real and normalized as

The hydrogen atom’s vibrational energies EeH(rFF) depend
parametrically on rFF and serve as an effective one-dimensional
potential in a partial differential equation for �. In the ap-
proximation that we refer to as “BO (reduced hydrogen mass)”,
we solve

{- 1
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∂
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2 + EeH(rFF)}�BO(rFF) ) EBO�BO(rFF)

(10)

and compare EBO with E. If we instead minimize an expectation
value of the Hamiltonian of eq 1 in the wave function �� by
varying �, we arrive at the following equation:

with

It is, however, noticed that U(rFF) ) 0 because of eq 9. Equation
11 is, therefore, simplified to

where

which corresponds to the so-called “adiabatic” potential. We
refer to this calculation as “DBOC (reduced hydrogen mass)”
in the following. One can estimate the difference EDBOC - EBO

accurately by the first-order perturbation theory also:

We can begin with the following equation to study the same
dynamics defined by eq 1:

where rCM is the center of mass (CM) of the two fluorine atoms,
rFF is the distance between the two, and the hydrogen position
is in cylindrical coordinates anchored at the CM. The total (mCM′
) 2mF) and reduced (mF′ ) mF/2) masses of the two fluorine
atoms and the bare mass of the hydrogen atom (mH) are used.
We distinguish quantities in eq 17 from the similar quantities
in eq 1 by tildes to underscore the fact that they are numerically
different. We introduce an approximation in the wave function,
which reads

where the exponential factor describes the translational motion
of the CM with the linear momentum k̃. The rotational motion
of the F-F skeleton is again suppressed because we include
only one internal coordinate rFF in the above. Because of the
axial symmetry of the potential Ee, we find

where the quantum number k has the same meaning as before.
The two-dimensional function �̃ must satisfy

where we have used the obvious fact that Ee and ẼeH are
translationally invariant. Notice that the bare mass of hydrogen
mH is used in the above equation. Therefore, this closely
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resembles the BO approximation in usual electronic structure
calculations, where the positions of the heavy particles (nuclei)
are held fixed in space and bare electron masses are used in
the electronic Hamiltonian. This is in contrast to eq 6, where
both light and heavy particle motion is described in the relative
coordinates and reduced masses are used.

The energies and wave functions of the heavy particle motion
are obtained by solving the following one-dimensional partial
differential equation for �̃:

which we refer to as “BO (bare hydrogen mass)”. With diagonal
corrections, that is, “DBOC (bare hydrogen mass)”, the equation
to be solved is

where

Because the hydrogen position is relative to the fluorine atoms’
CM, to evaluate W̃(rFF), we can use the relation

and the computational machinery similar to the one for solving eq
20. Equation 23 corrects the error caused by the approximate
separation of variables introduced in eq 18. Equation 24, on the
other hand, addresses the error arising from the additional tacit
approximation in the BO scheme, namely, the so-called “reduced
mass error” as pointed out by Handy and Lee12 and discussed
extensively by Kutzelnigg.13,14 See also Garashchuk et al.11 on this
issue in the context of an analytically solvable model.

III. Computational Details and Results

Two-dimensional partial differential eqs 6 and 20 were solved
by a finite-difference method on an evenly spaced 21 × 41
rectangular rH-zH grid at the interval of 5 pm. The second and
first derivatives were evaluated by three- and two-point formulas,
respectively:

At rH ) 0, the singular (i.e., the second and third) terms in the
kinetic energy operator of eqs 6 and 20 were simply omitted.
This was justified because they must both vanish when k ) 0
and they must cancel with each other when k g 1. The resulting
wave functions were found to satisfy the conditions of eqs 7
and 8. The 861 × 861 Hamiltonian matrix was diagonalized,
and all eigenvalues and the corresponding right (� or �̃) and
left (rH� or rH�̃) eigenvectors were collected.

The eigenvalues and eigenvectors of three of these states were
recorded at each point of the rFF grid in the range of 170-310
pm at the interval of 2.5 pm (57 points) for FHF-. The
corresponding ranges in ClHCl- and BrHBr- were 252.5-435
pm at the interval of 1.25 pm (147 points) and 287.5-450 pm
at the interval of 1.25 pm (131 points), respectively. The first
state considered was the lowest root �0 with k ) 0 (the zero-
point vibration of the hydrogen). The wave function of this state
in FHF- at rFF ) 230 pm is shown in Figure 2 along with
the two-dimensional slice of the potential energy surface,
Ee(rH,zH,rFF). The second state considered was the second lowest
root �1 with k ) 0, which corresponds to the antisymmetric
stretch (Figure 3). Its wave function is characterized by a nodal
plane perpendicular to the F-F axis. The third state is the lowest
root �0 with k ) 1 and is one of the degenerate bending
vibrations (the counterpart is with k )-1). Linear combinations
of the complex wave functions of the degenerate states look
like Cartesian p-type orbitals perpendicular to the F-F axis
(Figure 4). As expected from eq 7, the wave functions in Figures
2 and 3 have vanishing first derivatives on the F-F axis. The
wave function in Figure 4 vanishes on the same axis, satisfying
eq 8. The same set of states in ClHCl- and BrHBr- was
examined.

Figures 5 and 6 illustrate the �0 (k ) 0) wave function of
FHF- at rather short (170 pm) and long (270 pm) F-F distances,
respectively. At the short F-F distance, the hydrogen atom in
its lowest-energy vibrational state can hardly exist at the
midpoint of the F-F axis and the zero-point wave function
becomes a torus (note our use of the cylindrical coordinates).
At the long F-F distance, in contrast, the hydrogen atom
experiences a double-well potential and its zero-point wave
function consists of two well-separated disks. These observations
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Figure 2. Potential energy surface, Ee, of FHF- (surface drawn with
solid curves and contours with broken curves) and the wave function
�0 with k ) 0 (surface drawn with broken curves and contours with
dotted curves) at rFF ) 230 pm.
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underscore the complex rFF dependence of even the zero-point
wave function of the hydrogen motion and the strong anhar-
monic coupling of all vibrational modes.15-17

The eigenvalues of these three states as functions of rFF are
plotted in Figure 7 (solid curves) for FHF-. They serve as the
effective potential energy curves (EeH in eq 10 or ẼeH in eq 21)
for the F-F stretch. The DBOC to the effective potentials was
computed according to eq 13 or eqs 23 and 24 and is shown in
Figure 7 as broken curves (the magnitudes of the corrections
are exaggerated in the figure). These corrections involve
the differentiation of the wave functions �(rH,zH;rFF) or
�̃(rH,zH;rFF,rCM) with respect to rFF. To evaluate them correctly,
these wave functions were made to be real, normalized
according to eq 9, and phase-matched across the entire domain
of rFF. The fact that �0 (k ) 0) and �1 (k ) 0) curves merge
into one curve at large values of rFF is a result of the double-
well nature of the potential (Figure 6), whose lowest root
becomes doubly degenerate as the two wells are separated from
each other.

In addition, the unapproximated (non-BO) Schrödinger eq 1
was solved for E by Davidson’s trial vector algorithm.18

Although eq 1 is four-dimensional, the angular (�H) dependence
can still be separated exactly because of the axial symmetry of
the potential, Ee, and the problem is thus computationally only
three-dimensional. The representations of the operators and the
potential energy surface were made identical. Namely, the same
cylindrical grids of sizes 21 × 41 × 57 for FHF-, 21 × 41 ×
147 for ClHCl-, and 21 × 41 × 131 for BrHBr- were used to

support the potential energy surfaces, and the first and second
derivatives were evaluated by the same two- and three-point
finite-difference formulas, respectively. Therefore, any errors
associated with these approximations should affect both the BO
(EBO and EDBOC) and non-BO (E) calculations equally. The
results of these calculations should be rigorously comparable
with one another, and therefore, the errors introduced solely by

Figure 5. Same as Figure 2 with rFF ) 170 pm.

Figure 6. Same as Figure 2 with rFF ) 270 pm.

Figure 7. Potential energy curves in the BO (reduced hydrogen mass)
approximation, EeH (solid curves), and the DBOC, EeH

DBOC - EeH (broken
curves; magnified by 10 times and relative to the minimum energies
of the corresponding states).

Figure 3. Same as Figure 2, but for �1 with k ) 0.

Figure 4. Same as Figure 2, but for �0 with k ) 1.

On the Validity of the Born-Oppenheimer Separation J. Phys. Chem. A, Vol. 113, No. 45, 2009 12465



the BO approximation can be quantified. We refer to the energies
E obtained by these non-BO calculations as “exact” in this
article.

The results of the BO and DBOC calculations based on the
reduced and bare hydrogen masses are compared with the exact
results for four low-lying vibrational states in Table 1. Figure
8 plots the absolute values of the deviations in the BO and
DBOC results from the corresponding exact values at three
different fluorine masses: (10)1/2mF, (1)1/2mF, (0.1)1/2mF. Figures
9 and 10 are the same plots for ClHCl- ((10)1/2mCl, (1)1/2mCl,
(0.1)1/2mCl) and BrHBr- ((0.1)1/2mBr, (0.01)1/2mBr, (0.001)1/2mBr),
respectively. The potential energy surfaces, Ee(rH,zH,rFF), were
evaluated by the Hartree-Fock method with the aug-cc-pVDZ
basis set. Although the anharmonic vibrational frequencies
obtained with these potentials are by no means accurate in
comparison with experiments, the conclusions about the BO
approximation and DBOC should not depend upon how the
potentials are obtained. For accurate computational characteriza-
tion of the anharmonic vibrations in FHF-, see our previous
work.17

IV. Discussion

Table 1 attests to the remarkable accuracy of the BO
approximation with the reduced hydrogen mass. The errors in
the total energies are on the order of 10-5 au with the largest
error being only 51 × 10-6 au or 11 cm-1 (in FHF-). The errors
in the relatiVe energies (anharmonic vibrational frequencies) are
negligibly small especially between the (000) and (100) states,
which share the same effective one-dimensional potentials. The
use of the bare hydrogen mass increases the errors in the total
and relative energies by a factor of 2-7, but the errors are still
small even in FHF- (the maximum error in the relative energies
is 99 × 10-6 au or 22 cm-1) and smaller in ClHCl- and BrHBr-.
Considering the large mass ratio (0.025 < ε < 0.11), we may
conclude that the BO-like approximate separation of variables
has a broad range of validity and its application should not be
confined to just between electrons and nuclei (ε ≈ 0.0001). The
conclusion apparently disagrees with that of Dai et al.,19 who
applied a (3 + 1) approximate separation of variables in the
four-dimensional vibrational problem of the linear OHO+

fragment (as a model of H5O2
+) and reported poor results. The

disagreement arises because, in the study of Dai et al.,19 the
separation was between one of the hydrogen atom’s vibrations
(the antisymmetric stretch) and the other three involving both
hydrogen and oxygen motion (the symmetric stretch and doubly
degenerate bend) instead of a more logical separation between
the vibrations of heavy and light particles.

The DBOC reduces the errors in the BO approximations
uniformly by up to an order of magnitude for all states
considered except for the (100) state. The so-called reduced
mass errors seem to be completely erased by the DBOC, and
the remaining errors are almost identical between the
calculations using the reduced and bare hydrogen masses in
ClHCl- and BrHBr-. The observation that the (100) state
does not benefit from the DBOC and sometimes their energies
deteriorate with the DBOC may be related to the fact that it
is an excited state (�1) in the one-dimensional potentials,
whereas the other three states all correspond to the zero-
point states (�0’s) in the same potentials. This result might
forewarn that, in the context of usual BO electronic structure
calculations, the DBOC does not necessarily improve vibra-
tional frequencies or may even deteriorate them, whereas it

TABLE 1: Energies (in au) of the Vibrational States of FHF-, ClHCl-, and BrHBr- and the Errors (in 10-6 au) in the
Energies Obtained by Employing the BO Approximation with and without the DBOC

reduced mass bare mass

statea rootb exact BO DBOC BO DBOC

FHF-

(000) �0�0 (k ) 0) -199.516292 -27 +7 -149 +4
(100) �0�1 (k ) 0) -199.513637 -27 +26 -149 +23
(001) �1�0 (k ) 0) -199.511488 -51 +9 -248 +7
(010) �0�0 (k ) 1) -199.509859 -32 +9 -233 +11

ClHCl-

(000) �0�0 (k ) 0) -919.676878 -36 +7 -76 +7
(100) �0�1 (k ) 0) -919.675797 -40 +18 -83 +18
(001) �1�0 (k ) 0) -919.675482 -40 +4 -98 +4
(010) �0�0 (k ) 1) -919.673158 -49 +8 -115 +9

BrHBr-

(000) �0�0 (k ) 0) -5145.451329 -26 +4 -42 +4
(100) �0�1 (k ) 0) -5145.450788 -6 +32 -11 +32
(001) �1�0 (k ) 0) -5145.450458 -19 +2 -41 +1
(010) �0�0 (k ) 1) -5145.448197 -26 +4 -52 +4

a The quantum numbers of the symmetric stretch, bend, and antisymmetric stretch. b In the bare-mass calculations, � and � should be
understood to mean �̃ and �̃, respectively.

Figure 8. Absolute errors (in au) in the energies of the zero-point
vibrational state of FHF- computed in the BO approximations with
and without the DBOC plotted as functions of the mass ratio mH/mF′ .
Both axes use logarithmic scales.
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is expected to improve electronic (0-0) transition energies
and zero-point vibrational energies. For higher-lying states,
the BO and DBOC treatments are expected to break down
as the off-diagonal BO corrections (i.e., the nonadiabatic
couplings) between different hydrogen states become sub-
stantial, in particular, between the �0 (k ) 0) and �1 (k ) 0)
states, which become degenerate as rFFf ∞. See also Mills20

on the significance of DBOC in the tunneling splitting in
H-F stretching vibrations in (HF)2.

Figures 8-10 demonstrate that the errors in the BO ap-
proximation scale as ε1; the gradients of the lines connecting
the points with the two smallest values of ε in each log-log
plot are 0.99 and 0.99 in FHF-, 0.99 and 1.00 in ClHCl-, and
0.84 and 0.93 in BrHBr-, with the first of the two values
corresponding to the reduced-mass calculation and the second
the bare-mass calculation. The corresponding gradients of the
errors in the DBOC calculations are 1.60 and 2.33 in FHF-,
1.67 and 1.84 in ClHCl-, and 1.94 and 2.00 in BrHBr-,
suggesting that the ε2 scaling of the remaining errors after the
DBOC is made. The intrinsic numerical uncertainties in the
computational procedure appear to be on the order of 10-6 au,
and the reliable gradients were not obtained with smaller values
of ε.

Our mathematical analysis that follows indicates that the
errors in the BO and DBOC calculations should scale asymp-
totically as ε1 and ε2, respectively. Therefore, our numerical
results are consistent with our analytical conclusion. Note,
however, that Born and Oppenheimer1 deduced that the errors
inherent to the BO approximation were proportional to ε5/4,
whereas Takahashi and Takatsuka9 suggested that the correct
scaling should be ε3/2. Our calculations and the following
mathematical analysis do not support either of these conclusions,1,9

but agree with the conclusions drawn from analytically solvable
models by Pino and Mujica10 and by Garashchuk et al.11 The
studies of Born and Oppenheimer and of Takahashi and
Takatsuka were based on perturbation theory, whose validity
had been questioned. In the following, we provide a much more
transparent and concise explanation of our result (the ε1 and ε2

scaling of the errors in the BO and DBOC calculations,
respectively) on the basis of the variational formalism of Born
and Huang,21 again adopting FHF- as a representative case and
using similar notation of symbols as the foregoing discussion.

The conclusions should be valid generally for most any
molecules and dynamical degrees of freedom.

A vibrational wave function of FHF- can be expanded exactly
as

where �p is the pth hydrogen wave function, �pk is the kth fluorine
wave function in the effective potential of the pth hydrogen state,
and rH and rFF are hydrogen and fluorine coordinates, respectively.
The index p runs over all hydrogen wave functions, which form a
complete, orthonormal set. The hydrogen and fluorine wave
functions in eq 28 satisfy the following equations

and

with

and

Figure 9. Absolute errors (in au) in the energies of the zero-point
vibrational state of ClHCl- computed in the BO approximations with
and without the DBOC plotted as functions of the mass ratio mH/mCl′ .
Both axes use logarithmic scales.

Figure 10. Absolute errors (in au) in the energies of the zero-point
vibrational state of BrHBr- computed in the BO approximations with
and without the DBOC plotted as functions of the mass ratio mH/mBr′ .
Both axes use logarithmic scales.

Ψ(rH, rFF) ) ∑
p,k

�p(rH;rFF)�pk(rFF) (28)

{- 1
2mH

∇H
2 + Ee(rH, rFF)}�p(rH;rFF) ) Ep(rFF)�p(rH;rFF)

(29)

∑
q

Ĥpq�qk(rFF) ) Epk�pk(rFF) (30)

Ĥpq ) δpq{- 1
2mF′

∇FF
2 + Ep(rFF)} -

Vpq(rFF)

2mF′
-

Upq(rFF) ·∇FF

mF′
(31)

Vpq(rFF) ) 〈�p(rH;rFF)|∇FF
2 |�q(rH;rFF)〉rH

(32)
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where Ee(rH,rFF) is the potential energy surface, Ep(rFF) is the one-
dimensional effective potential of the pth hydrogen state, and 〈 · · · 〉rH

denotes an integration over the hydrogen variables.
The BO and DBOC treatments amount to retaining only one

dominant contribution in the summation of eq 28. In other
words, they correspond to setting all off-diagonal elements of
Ĥpq in eq 31 to zero. Defining approximate, diagonal Hamilto-
nians by

the BO and DBOC results are obtained by solving the following
uncoupled equations:

respectively.
Let us analyze the asymptotic polynomial dependence on ε

of the various factors entering these equations. Ep(rFF) in eq 29
is an effective potential for the F-F stretching motion. Since
eq 29 does not depend on the reduced fluorine mass (mF′ ), Ep(rFF)
is independent of the mass ratio ε; in other words, Ep(rFF) scales
as ε0. When the reduced hydrogen mass (mH′ ) is used in eq 29,
Ep(rFF) depends very weakly on mF′ , but its effect on this scaling
discussion is negligible. A quantum (transition energy) of the
fluorine atoms’ vibration in the BO approximation, Epk

BO - Epl
BO,

scales as ε1/2. This is based on the assumption that Ep(rFF) is
approximately harmonic and on the fact that a vibrational
quantum of a harmonic oscillator shows the inverse-square-root
dependence on the reduced mass. It should be cautioned that a
different assumption on the shape of Ep(rFF) (e.g., the particle
in a box) leads to different scaling behavior.

The matrix representation of Ĥpp
BO in the basis of the

eigenfunctions, {�pk
BO}, is diagonal with the diagonal elements

being equal to Epk
BO (eq 36). Considering just two fluorine atoms’

vibrational states (k ) 0 and 1) (not to be confused with the
angular momentum) in the single, pth hydrogen state, it has
the structure

where Ep0
BO < Ep1

BO is assumed. In the same basis, the matrix
representation of Ĥpp

DBOC is no longer diagonal as the DBOC
adds the nonconstant corrections to Ĥpp

BO, and therefore, {�pk
BO}

is not an eigenfunction of Ĥpp
DBOC (eqs 35 and 37). Hence, the

matrix now has the form

with

because Upp ) 0. The corrections (epk,pl) to individual matrix
elements scale as ε1 because of the 1/mF′ factor in eq 40. Using
(1 + x)1/2 ≈ 1 + x/2, we find that the eigenvalues of the 2 × 2
matrix Hpp

DBOC are approximately

and

These eigenvalues are the sums of the corresponding BO
energies (Ep0

BO and Ep1
BO), the leading-order corrections (ep0,p0 and

ep1,p1), the second leading-order corrections, and so forth. The
leading-order corrections scale as ε1. The numerators in the
second leading-order corrections are proportional to ε2, whereas
the denominators scale as ε1/2 because the energy difference Ep1

BO

- Ep0
BO corresponds to a quantum of the fluorine atoms’ vibration.

Overall, the second leading-order corrections are proportional
to ε3/2. Therefore, the differences between the BO and DBOC
energies scale as ε1 and the errors (from the exact values) in
the BO energies should thus depend linearly on the mass ratio.
If the DBOC is made in the first-order perturbation approxima-
tion of eq 16, only the leading-order corrections (ep0,p0 and ep1,p1)
are added to the BO energies. The second leading-order
contributions, which arise from the off-diagonal elements in the
matrix Hpp

DBOC, are not included in the first-order perturbation
treatment of DBOC, which, therefore, has the errors on the order
of ε3/2.

Switching the basis to {�pk
DBOC}, we can bring the matrix

representation of Ĥpp
DBOC to a diagonal form. What is ap-

proximated in this representation are the couplings across
different hydrogen states. The matrix representation of the exact
Hamiltonian Ĥ has nonzero off-diagonal elements in the basis
of {�pk

DBOC} and looks like

in the simple case of two hydrogen states (Eq0
DBOC > Ep0

DBOC), where
ep0,q0′ vanishes when p ) q and otherwise

The eigenvalues are approximately

Upq(rFF) ) 〈�p(rH;rFF)|∇FF|�q(rH;rFF)〉rH
(33)

Ĥpq
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BO 0

0 Ep1
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) (39)
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〈�pk

BO|Vpp|�pl
BO〉rFF

2mF′
(40)
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BO + ep0,p0 -

ep0,p1ep1,p0

Ep1
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(41)

Ep1
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BO - Ep0
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and

The last terms in the above two expressions are the leading-
order differences in energy between DBOC and exact treatments
and are the measures of the errors in the energies after the
DBOC is made variationally. Their numerators scale as ε2

because of the 1/mF′ dependence of epk,ql′ (eq 44). The denomina-
tors correspond to the energy differences between two hydrogen
states and are independent of the halogen mass; they scale as
ε0. Consequently, these leading-order corrections to the DBOC
energies and hence the errors in the DBOC energies are
asymptotically proportional to ε2.

Table 2 summarizes the conclusion of the analysis, which
applies to both reduced- and bare-mass calculations. The errors
in the energies obtained by the BO calculations are asymptoti-
cally proportional to ε1. When DBOC is applied in the first-
order perturbation approximation of eq 16, the errors reduce to
ε3/2. The errors in the complete DBOC calculations (using the
“adiabatic” potential energy surfaces and variationally determin-
ing the wave function for these surfaces) scale as ε2. When the
F-F stretch vibrations are altogether neglected and Ep(rFF) is
minimized by varying rFF, the energy suffers from much greater
errors that are proportional to ε1/2 (the zero-point vibrational
energy of the F-F stretch). While these conclusions are deduced
taking 2 × 2 matrices as examples, they are valid for any
number of the hydrogen atom’s and fluorine atoms’ vibrational
states. They should also be true for the usual BO separation
between electrons and nuclei and DBOC in electronic structure
theory insofar as the coupling of rotational motion from the
rest is negligible. The ε3/2 and ε2 dependence of the remaining
errors in DBOC treatments is also consistent with the findings
of Pino and Mujica10 and Garashchuk et al.,11 respectively, for
analytically solvable models.

V. Conclusions

The errors in the BO-like approximate separation of
variables between heavy- and light-particle vibrations have
been found to be remarkably small (on the order of 10-5 au)
in spite of the large mass ratio ε ≈ 0.1. When the bare
hydrogen mass is used instead of reduced hydrogen mass

and, therefore, the translational degrees of freedom are not
correctly decoupled from the others, the errors increase by a
factor of 2-7, but still remain to be relatively small overall.
This encourages us to broaden the application domain of BO-
like approximate separation of variables to dimensions less
explored by this technique. The DBOC has also proven
effective in systematically reducing these already small errors
to varied degrees except for the states that are excited in the
halogen-halogen stretch. The exact cause of the latter is
unclear but is probably related to the fact that these states
are not the lowest states of the effective one-dimensional
potentials. The so-called “reduced mass errors” in the bare-
mass calculations are almost completely erased by the DBOC.
Our numerical and analytical results have revised the previous
conclusions by Born and Oppenheimer1 and Takahashi and
Takatsuka9 on the asymptotic polynomial dependence of the
errors in the BO treatments on the mass ratio ε. The correct
dependence of errors has been found to be ε1, ε3/2, and ε2 in
the BO, DBOC (perturbation), and DBOC (variational)
treatments, respectively.
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TABLE 2: Asymptotic Polynomial Dependence of Errors in
the Various Approximate Solutions of the Schrödinger
Equation on the Mass Ratio ε (ε , 1)

approximation
energy expression

in this article error

light particle only EeH or Ep (at its minimum) ε1/2

BO EBO, ẼBO, or Ep0
BO ε1

DBOC (perturbation) EjDBOC or Ep0
BO + ep0,p0 ε3/2

DBOC (variation) EDBOC, ẼDBOC, or Ep0
DBOC ε2

Eq0
DBOC +

ep0,q0′ eq0,p0′

Eq0
DBOC - Ep0

DBOC
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